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Abstract

Electric, autonomous vehicles promise to address technical consumption inefficiencies associated
with gasoline use and reduce emissions. Potential realization of this prospect has prompted
considerable interest and investment in the technology. Using publicly available data from a select
market, we examine the magnitude of the envisioned benefits and the determinants of the financial
payoff of investing in a tripartite innovation in motor vehicle transportation: vehicle electrification,
vehicle automation, and vehicle sharing. In contrast to previous work, we document that (a) the
technology’s envisioned cost effectiveness may be impeded by previously unconsidered parameters,
(b) the inability to achieve cost parity with the status quo does not necessarily preclude net
increases in energy consumption and emissions, (c) these increases are driven primarily by induced
demand and mode switches away from pooled personal vehicles, and (d) the aforementioned
externalities may be mitigated by leveraging a specific set of technological, behavioral and logistical
pathways. We quantify—for the first time—the thresholds required for each of these pathways to
be effective and demonstrate that pathway stringency is largely influenced by heterogeneity in trip

timing behavior. We conclude that enacting these pathways is crucial to fostering environmental
stewardship absent impediments in economic mobility.

1. Introduction

Energy demand in road transportation is signific-
ant. In the United States alone, gasoline consump-
tion averages over 300 million gallons daily, most
of which is used by light-duty vehicles [1]. Though
use of these vehicles facilitates economic mobil-
ity, negative externalities persist. Internal combus-
tion engines (ICE)—used to propel most light duty
vehicles—convert only a fraction of stored energy
into propulsion, thereby producing significant con-
sumption inefficiencies [2]. ICE powered vehicles
are also—owing to fossil-fuel reliance—a dominant
source of air pollutants that contribute to climate
change and increase societal morbidity and mortality
risk [3, 4].

© 2021 The Author(s). Published by IOP Publishing Ltd

Can the confluence of three technologies—
vehicle electrification, vehicle automation, and
vehicle sharing—help address the aforementioned
externalities? Vehicle electrification offers a more
favorable energy profile owing to superior tank-to-
wheel efficiency and zero tailpipe emissions [5]. This
proposition is improved upon by vehicle automatiz-
ation, the shifting of higher-order control functions
from humans to machines. Doing so facilitates eco-
driving, vehicle maneuvering practices that minim-
ize energy losses associated with repeated, energy-
intensive braking-acceleration cycles [6-9].

Further energy related benefits are envisioned via
vehicle sharing. Existing personal vehicle (PV) owner-
ship models contribute to road congestion [10], and
by consequence, increased consumption/emissions,
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owing to homogenous temporal and route use.
Vehicle sharing—made more seamless by trip match-
ing algorithms—may mitigate these effects by redu-
cing the number of vehicles required to meet local
transportation needs [11]. Sharing (here considered
separately from ride pooling) entails foregoing PV
ownership entirely and instead procuring mobility as
a service using commercial fleet operators (i.e. taxis)
[12-15].

The confluence of vehicle electrification, vehicle
automation, and vehicle sharing features promin-
ently in existing literature as a means of reducing
energy consumption and emissions [12-15]. Our
work examines the efficacy of this approach. We do so
in two parts. First, we quantify the financial propos-
ition of electric, autonomous taxis (ATs) compared
to non-electric, non-autonomous vehicles currently
employed as conventional taxis (CTs) or PVs. Next,
we assess, based on this financial proposition, the
energy impact of AT deployment relative to the status
quo.

Unlike previous work, our work considers factors
such as safety oversight [16-18]°, capacity utiliz-
ation considerations and the share of social gains
required by fleet operators as a profit incentive to
shift from CTs to ATs [12, 13, 19-21]. Our work con-
siders factors traditionally overlooked when estim-
ating AT costs, the most notable being safety over-
sight. We also consider the possible paradox whereby
technology-driven cost and energy savings produce
rebound effects via increased energy use from high
elasticity of usage when price falls.

The findings of our paper are fourfold. First, we
illustrate that an AT’s financial proposition, while
being more favorable than CTs, remains—contrary
to existing discourse—less favorable than PVs. ATs
impose a cost of between $1.42 and $2.24 per mile
compared to $3.55 and $0.95 per mile incurred
when using CTs and PVs respectively. Second, we
identify previously overlooked parameters, the most
notable being capacity utilization and profit incent-
ive, as significant impediments to achieving cost par-
ity between ATs and PVs. Omission of these para-
meters lowers AT rider costs to as low as $0.47
per mile. Third, we document that rebound effects
do not require cost parity between ATs and PVs.
We show that AT introduction produces a net
increase in energy consumption and emissions, des-
pite ATs being more expensive than PVs. Fourth,
we identify and quantify the technological, behavi-
oral and logistical pathways—namely, conformance
to AT-specific energy profile, ride-pooling and ‘smart
deployment—required to achieve net reduction in
energy consumption and emissions owing to AT
deployment.

> We do not distinguish between SAE Levels of Driving Automation
as human oversight is universally necessitated for safety-critical sys-
tems, regardless of the level of automaticity [16, 18].
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Our work collectively shows that the confluence of
vehicle electrification, vehicle automation and vehicle
sharing may not—contrary to existing discourse—
produce a favorable energy outcome. Our position
is informed by (a) an analysis of publicly avail-
able data in a select market, and (b) accommod-
ation of uncertainties typically associated with the
deployment of nascent technology. We conclude that
addressing technical consumption inefficiencies and
public health concerns associated with CTs and PVs
via ATs requires leveraging specific pathways, and by
consequence, will demand concerted collaboration
and engagement by regulators, auto makers, mobility
service providers and consumers alike.

2. Method

Our study examines the viability of ATs as a pathway
towards reduced energy consumption and emissions.
To do so, we first quantify and compare the finan-
cial proposition of electric, ATs to non-electric, non-
autonomous vehicles currently employed as CTs or
PVs. We subsequently assess, based on an AT’s finan-
cial proposition, the energy impact of AT deployment
relative to the status quo.

Our work employs a two-stage model (figure 1).
The first estimates—in a specified market—the cost
incurred by consumers for using ATs, CTs and
PVs respectively; the second estimates the aggregate
change in energy consumption and emissions asso-
ciated with AT introduction. Cost estimates for ATs
inform energy predictions surrounding the techno-
logy’s use, given the influence cost levies on techno-
logy adoption and proliferation.

We leverage—where possible—publicly available
data to inform our model. In instances where precise
data is unavailable, we utilize what data is available to
substantiate an informed estimate. We subsequently
test the relevance of our estimates by applying sensit-
ivity testing (see section 2.3). Details of our approach,
data that inform our model and references justifying
their use are available in the supplementary inform-
ation section (available online at stacks.iop.org/ERL/
16/094036/mmedia).

2.1. Financial estimation

Expenditures considered when estimating consumer
cost include vehicle financing, licensing, insurance,
maintenance, cleaning, fuel and, for ATs specifically,
safety oversight [16, 22]. Requisite safety oversight
is assumed to decrease as AT technology advances.
We also take account of operator-envisioned profit
expectations and fluctuations in capacity utilization
rates that reflect demand heterogeneity.

AT cost estimates also consider heterogeneity in
vehicle operational lifespan and annual mileage. As
the pro-rating of fixed costs over time impacts the
financial proposition of ATs, both factors warrant
attention. Mileage heterogeneity considers vehicle
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Figure 1. Two-stage model overview of financial and energy estimation. Arrow widths for financial estimation reflect fare/cost
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recharging requirements that may limit vehicle pro-
ductivity and subsequently, profitability [23, 24].
Productivity may be further impeded when vehicle
electrification is paired with vehicle automatization
owing to increased vehicular weight, sensor load and
aerodynamic drag, all of which limit vehicle range
[25].

We also consider consumer travel time in terms
of hourly wages and thus transform differences in
travel time to money units [19, 26]. Literature sug-
gests that productivity benefits are realized through
the re-allocation of time to paid or leisure activit-
ies that replace the demands of driving on attention.
Envisioned benefits include would-be drivers per-
forming other valued activities [19].

2.2. Energy estimation

The nascent nature of AT technology necessitates
consideration of a hypothetical vehicle. Our AT is
a mid-sized, electric auto with an internal volume
between 110 and 120 ft*. The vehicle’s energy pro-
file is assumed to be consistent with an electric
auto; one with a fuel economy and emissions foot-
print of 114 miles per gallon equivalent and 159.1
CO, grams per mile respectively [27]. Fuel economy
estimates are within the range of estimates pairing
vehicle electrification with vehicle automation [8, 28].
Emissions estimates account for vehicle production,

extraction, processing, transportation, and fuel distri-
bution [27].

The energy profile of CTs and PVs—both of
which are also assumed to be mid-sized vehicles
with an internal volume between 110 and 120 ft—are
estimated using pre-existing data [27]. CTs are—
consistent with the fleet profile in our target market—
assumed to be hybrid-electric vehicles whereas PVs
are powered by ICEs. Both vehicles have a fuel eco-
nomy of 52 and 34 miles per gallon and emit 237.7
and 380.2 grams of CO, grams per mile, respectively.
These figures reflect the lifetime mileage of CTs and
PVs in our target market.

Our model also considers the emissions profile
of public transit in our target market. Doing so
accommodates instances where AT introduction may
prompt mode switches from publicly funded trans-
portation modes [29]. Our public transit energy pro-
file is estimated—leveraging market specific demand
characteristics—as a weighted average of heavy rail,
commuter rail, light rail and transit buses [30, 31].
Consumption and emissions estimate per mile are
based on existing sources and are occupancy adjus-
ted [30]. These values are subsequently weighted
based on their proportional contribution to overall
miles traveled [31]. Proportions exclude passenger
miles traveled via other motorized and nonmotorized
transportation modes.
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2.3. Uncertainty considerations

Uncertainty surrounding an AT’s precise financial
and energy profile warrant acknowledgement. The
validity of our assumptions and the predictions
estimated by our model are admittedly based on
imperfect information, this given the nascent nature
of the technology. For example, there is little pub-
licly available data on what AT financing costs will
be. We address concerns regarding the magnitude of
input parameters (like financing), the relevance of
their inclusion (particularly where licensing fees are
concerned) and their subsequent impact on the cost
proposition of ATs through elasticity testing and sens-
itivity analysis (detailed in section 3.1).

A similar approach is employed when estimating
the energy impact of ATs. Impact estimates consider
specific vehicle energy profiles and where electrified
powertrains are concerned, grid carbon intensity and
battery replacement frequency. This approach may
well under or overestimate the true energy impact of
ATs. Consequently, we also quantify the consump-
tion/emissions footprint required of ATs to produce
a net positive energy impact, acknowledging that
variations in those assumptions would demand a
less or more stringent AT energy profile (detailed in
section 3.4).

3. Results and discussion

Our results and discussion are structured as follows.
In section 3.1, we present and discuss the financial
proposition of ATs compared to CTs and PVs. In
section 3.2, we assess—based on the aforementioned
results—the energy impact of AT deployment relat-
ive to the status quo. Our energy assessment sub-
sequently informs our evaluation of subsequent con-
siderations, which are presented in section 3.3. In
section 3.4, we address uncertainties surrounding our
work and in section 3.5, we assess the public policy
implications.

3.1. Financial assessment

AT fare-per-mile estimates drop as technology
advances (figure 2). Cost parity between ATs and
CTs is achieved at low levels of technological matur-
ity regardless of travel time costs. However, achieving
cost parity between ATs and PVs requires both high
levels of technological maturity and consideration of
travel time cost.

Elasticity testing of AT-related input costs and
parameters reveals several effects (table 1). Assum-
ing high levels of technological maturity, capacity
utilization approaches unit elasticity, dominating
other model parameters. This is followed by annual
mileage, envisioned profit-per-mile and licensing,
whose changes exert disproportional influence on AT
fares relative to other model parameters (i.e. finan-
cing, insurance, maintenance, cleaning, fuel, safety
oversight and operational lifespan).

A Nunes et al

We use sensitivity analysis to identify the con-
ditions under which AT fares become cost compet-
itive with PVs. We focus on inputs/parameters for
AT fleet operators—specifically, capacity utilization,
annual mileage and envisioned profit-per-mile. This
focus is intentional as reductions in other input cost-
s/parameters, specifically financing, maintenance and
fuel depend on a complex interaction between and
across economic actors and conditions and hence are
beyond the control of AT fleet operators.

Our model estimates that increasing AT capa-
city utilization rates (from 52% to 53%) produces—
assuming high levels of technological maturity and
consideration of the value of travel time—fares com-
parable with PVs. Absent consideration of travel time,
cost parity between ATs and PVs requires—ceteris
paribus—raising AT capacity utilization rates from
52% to 78%. Requisite utilization rates are lower as
annual mileage increases and/or envisioned profit-
per-mile decreases.

We draw four conclusions from the aforemen-
tioned results.

Firstly, ATs can offer fares comparable to or better
than CTs today. At current $3.55 per mile fares, our
model estimates that operator profits would rise from
$0.27 to between $0.95 and $1.38 per mile respect-
ively, subject to ATS” technological maturity. Altern-
atively, if fleet operators’ profits did not increase, per
mile fares would decline from $3.55 to between $1.42
and $2.24.

Second, while ATs should be competitive with
CTs, they are unlikely to offer a financial proposition
comparable to PVs. At high levels of technological
maturity, AT fares remain—ceteris paribus—costlier
than PV ownership ($1.42 versus $0.95 per mile).
This effect persists even when we take account of
generalized travel time costs. Consideration of these
costs—which raises PV ownership costs to $1.40—
improves the value proposition of ATs relative to PVs
but fails to deliver cost parity.

Third, the lack of cost parity between ATs and
PVs is influenced by previously overlooked factors—
specifically ~capacity utilization and operator-
envisioned profit expectations. Absent consideration
of these factors, our model estimates that AT fares
could be as low as $0.47 per mile, significantly lower
than the cost of owning and operating PVs. How-
ever, our model estimates that the inclusion of the
aforementioned factors, the most influential being
capacity utilization, yields a minimum fare of $1.42.

Fourth, the impact that range reductions—
potentially induced by pairing vehicle electrification
and vehicle automation [23, 24]—have on AT fares,
depends on whether these reductions prompt changes
in occupied miles travelled. A 15% range reduction
requires—ceteris paribus—that AT fare increase from
the existing lower bound, $1.42, to at least $1.54 if the
absolute number of miles covered by riders decreases
proportionally. Conversely, no change in the absolute
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Figure 2. Cost/fare-per-mile estimates.

Table 1. AT fare per mile estimates given a 5% change in specified input parameters.

Low maturity Medium maturity High maturity
5 10 25 30 45 50
Estimated fare 2.24 1.79 1.52 1.48 1.43 1.42
per mile
Financing 0.004 0.004 0.004 0.004 0.004 0.004
—0.159 —0.200 —0.235 —0.240 —0.249 —0.250
Licensing 0.015 0.015 0.015 0.015 0.015 0.015
—0.684 —0.857 —1.010 —1.031 —1.067 —1.074
Insurance 0.010 0.010 0.010 0.010 0.010 0.010
—0.458 —0.575 —0.678 —0.691 —0.716 —0.721
Maintenance 0.003 0.003 0.003 0.003 0.003 0.003
—0.136 —-0.170 —0.201 —0.205 —0.212 —0.213
Cleaning 0.005 0.005 0.005 0.005 0.005 0.005
—0.216 —0.270 —0.319 —0.325 —0.337 —0.339
Fuel 0.004 0.004 0.004 0.004 0.004 0.004
—0.165 —0.207 —0.244 —0.249 —0.258 —0.260
Safety 0.086 0.043 0.017 0.014 0.010 0.009
oversight —3.850 —2.413 —1.138 —0.968 —0.668 —0.605
Profit 0.026 0.026 0.026 0.026 0.026 0.026
—1.160 —1.454 —1.715 —1.750 —1.811 —1.824
Capacity 0.107 0.085 0.072 0.071 0.068 0.068
utilization —4.762 —4.762 —4.762 —4.762 —4.762 —4.762
Operational 0.003 0.003 0.003 0.003 0.003 0.003
lifespan —0.152 —0.190 —0.224 —0.229 —0.237 —0.238
Annual 0.071 0.049 0.036 0.035 0.033 0.032
mileage —3.164 —2.760 —2.401 —2.353 —2.268 —2.251

For each input parameter, the upper line denotes the absolute change in fare-per-mile ($) and the lower line, the relative change (%).
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Figure 3. Net change in number of vehicles operational daily assuming AT fare advantage over CTs and complete demand
accommodation. Lighter shades represent fewer operational vehicles. Heterogenous and homogenous trip timing scenarios are

displayed separately (a) and (b).

number of rider miles—which effectively increases
the AT’s utilization rate—produces fares as low as
$1.31°.

Our financial results admittedly differ from past
studies demonstrating cost competitiveness of ATs
with PVs [12—14, 19]. The primary reason for this is
that our model accounts for capacity utilization con-
siderations and operator-envisioned profit expecta-
tions. Although the inclusion of these factors ‘wor-
sens’ an AT’s financial proposition, their considera-
tion is timely and consistent with commercial fleet
operator business practices [20, 21].

3.2. Energy assessment

Turning to the energy impact of ATs, we first con-
sider instances in which AT fares are comparable to
those offered by CTs today—a scenario our model
predicts is plausible. Under this scenario, presuming
demand for AT services parallels that associated with
CTs, our model predicts net consumption and emis-
sions reductions of up to 54.39% and 33.07% respect-
ively, the precise figure depending on the magnitude
of fleet overhaul (i.e. number of CTs that are replaced
by ATs).

Predicting the environmental impact of ATs with
fare reductions relative to the status quo is more chal-
lenging. On the one hand, our model predicts that
fleet operators can—at high levels of technological
maturity—offer lower fares and earn profits consist-
ent with those realized today. However, these fares
remain costlier than PV ownership.

At first glance, the inability of ATs to fiscally com-
pete with PVs suggests that no change in energy
demand/emissions is likely. Given the high(er) cost of
using ATs versus PVs, drivers should choose the lat-
ter for mobility. Yet, recent research suggests that ATs
offering fares lower than CTs but higher than PVs may

6 This figure assumes profit expectations are aligned with exist-
ing per-mile estimates. Realignment with existing annualized profit
expectations produces a fare range of between $1.39 and $1.64.

6

cannibalize trips away from existing mobility options
and induce greater demand [29]. Our model predicts
AT fares within that range.

Cannibalization need not necessarily produce
a negative environmental impact. Mobility mode
switches from PVs to ATs may reduce consumption
owing to the latter’s improved energy efficiency [6—
9]. However, consumption may increase if origin-
ally selected mobility modes are more fuel efficient
[27, 29]. Further increases are likely owing to induced
demand in the form of trips that would otherwise not
exist absent the increased affordability of AT services.

We explore this scenario by leveraging pre-
existing findings, applicable assumptions and data for
our target market [5, 27, 29]. Our model yields four
results.

First, demand stimulated by introducing low-
cost AT services cannot be accommodated without
increasing the size of the existing taxi fleet. Our
model estimates that—assuming single ridership—
up to 1.98% of demand (both existing and new) may
be accommodated. However, maintaining the status
quo fleet size of taxis decreases net energy consump-
tion and emissions, owing to an AT’s energy advant-
age over CTs.

Second, accommodating demand totality via AT
fleet size increases may reduce the total number of
vehicles needed to meet aggregate demand. This effect
is attributed to higher daily mileage and by con-
sequence, the number of trips ATs complete relative
to PVs. Our model estimates that the magnitude of
overall fleet size decreases realized via AT introduc-
tion depends on homogeneity in trip timing behavior
(figures 3(a) and (b)).

Third, accommodating aggregate demand using
ATs produces a net increase in energy consump-
tion and emissions. This increase is foremost driven
by induced demand followed by mode switches
from pooled PVs to ATs. The magnitude of the net
increase in energy depends on trip timing behavior.
Homogeneity in trip timing—such as morning and
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Figure 4. Net change in daily energy consumption assuming AT fare advantage over CTs and complete demand accommodation.
Blue shades represent net zero (or more favorable) consumption impact. Heterogenous and homogenous trip timing scenarios
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evening peaks during which a significant proportion
of all daily journeys is completed—produces higher
net increases in consumption (figures 4(a) and (b))
and emissions (figures 5(a) and (b)) respectively.

Fourth, increasing capacity utilization rates
improves an AT’s energy proposition. The magnitude
of the increase required to achieve net zero consump-
tion and emissions depends on trip timing behavior.
Homogeneity in trip timing requires the achieve-
ment of higher utilization rates (66% and 91% for
consumption and emissions respectively) compared
to instances in which trip timing is uniformly spread
through the day (57% and 79% for consumption and
emissions respectively).

Collectively, our findings suggest that the con-
fluence of vehicle electrification, vehicle automatiz-
ation and vehicle sharing may—based on our fin-
ancial assessment, profiled AT and specific market
characteristics—be insufficient to achieve favorable
energy outcomes, relative to the status quo.

3.3. Pathways towards net zero
Given the aforementioned results, how can the energy
benefits of ATs be realized absent the energy costs

associated with their use? In this section, we identify
pathways for achieving this outcome and quantify the
thresholds required for each of these pathways.

3.3.1. Pathway 1—technological improvements
Achieving net zero consumption/emissions via ATs
may be achieved via technological advances: specific-
ally, a superior vehicle energy profile. Our model
estimates that a favorable energy outcome requires—
presuming homogeneity in trip timing behavior—a
fuel economy of 145.32 MPGe and an emissions pro-
file of between 91.14 CO, grams per mile (figure 6).
Realization of a higher fuel economy advantage, spe-
cifically 245 MPGe, precludes the need for improv-
ing an AT’s emissions profile given interdependencies
between fuel economy and emissions [27]. Existing
literature suggests pairing vehicle electrification with
automatization makes this outcome plausible [8, 28].
Absent this advantage, a favorable energy out-
come may be achieved via improvements in fuel
economy, lifetime distance travelled and reductions
in emissions from vehicle manufacturing and fuel
production. Our model identifies improvements in
fuel economy and emissions reductions from fuel
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Figure 6. Requisite AT emissions profile assuming improvements in AT MPGe and fuel production emissions. Green shades
represent conditions under which an AT emissions profile yields net zero (or more favorable) emissions impact for 52% capacity
utilization and single occupancy. Blue text represents requisite fuel economy and emissions thresholds assuming homogeneity in

trip timing behavior.

production as most responsive to producing an
energy profile that can, at achievable capacity utiliza-
tion rates [32-34], produce a favorable energy out-
come. Presuming the realization of a consumption
advantage required to achieve net zero emissions, the
requisite emissions profile may be achieved—ceteris
paribus—by reducing emissions from fuel produc-
tion from 121 CO, grams per megajoule to 73 CO,
grams per megajoule’.

3.3.2. Pathway 2—behavioral improvements
Ride-pooling, the process whereby multiple fare-
paying riders travelling to the same destination share
the same vehicle, can significantly reduce per passen-
ger energy consumption and emissions [35, 36]. This
is as true for ATs (figures 4 and 5) as it is for CTs
and PVs. But precisely how many riders are required
per ride and what percentage of rides require pooling
remains less clear. We address these questions here,
given (a) ride-pooling’s documented importance as
a pathway towards energy savings, and (b) the per-
ceived disutility associated with sharing rides [37—-40].
Our model estimates that ATs must have an aver-
age rider occupancy of between 1.51 and 1.75—
depending on homogeneity in trip timing—to
achieve favorable energy outcomes. Assuming an AT
is occupied by two riders (who would otherwise com-
plete a trip separately), between 51.04% and 74.57%
of trips must be pooled. This requirement—which
is significantly higher than pooling rates observed
today [41-43]—Dbecomes less stringent if increases in

7 Heterogenous trip timing behavior requires—for net zero energy
outcomes—a consumption and emissions profile of 125.73 MPGe
and 105.34 CO, grams per mile respectively. A fuel economy of
200.05 MPGe precludes the need for AT emissions improvements.
Absent this outcome, net zero emission may be realized by reducing
emissions from fuel production from 121 CO, grams per mega-
joule to 77.84 CO; grams per megajoule.

capacity utilization rates and/or the number of fare
paying riders per trip are realized.

3.3.3. Pathway 3—logistical improvements

Higher capacity utilization rates obfuscate the
need for improving an AT’s energy profile and/or
ride-pooling. However, this process—traditionally
achieved by travelling the same number of miles
with more fare-paying passengers—is challenged by
homogeneity in trip timing behavior. Most com-
muters travel during rush hours in the morning and
the evening. This ultimately precludes capacity utiliz-
ation maximization [32-34] and by consequence, this
pathway’s viability to address the energy challenges
documented thus far.

An alternative strategy is to remove ATs from
service during demand troughs. Our model estim-
ates mileage reductions of between 33.79% and
42.72% are required—subject to homogeneity in trip
timing—to achieve a favorable energy outcome. Fleet
‘downtiming’ admittedly runs counter to existing
commercial business models [20, 21]. An asset not
being used is traditionally viewed as one not generat-
ing earnings. However, such reasoning may be chal-
lenged by more deliberate (versus universal) deploy-
ment of AT fleets.

3.4. Uncertainty considerations and management

The energy predictions surmised thus far and the
efficacy of the pathways proposed may be challenged
given uncertainties endemic to any nascent techno-
logy. For example, while our hypothetical AT assumes
an energy profile similar to existing electric vehicles,
the reality could be different. Higher AT computing
demands could increase energy consumption while
drive cycle optimization may reduce it [6-9, 25].
Speed selection and conformance may also influence
an AT’s energy profile [8, 28]. Our estimates may
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Table 2. AT threshold requirement for net zero assuming a 5% change in specified parameters/market attributes. Directionality of
changes to specified parameters/market attributes favor ATs (e.g. a 5% worsening of a PV’s consumption and emissions profile reduces
the requisite AT consumption and emissions profile by 4.49% and 4.36% respectively).

Pathway 1: technological

Pathway 2: behavioral

Pathway 3: logistical

Requisite energy profile

Requisite pooling threshold

Requisite mileage reduction

Consumption Emissions Consumption Emissions Consumption Emissions
Original 145.32 91.14 27.47 74.57 21.55 42.72
estimate
13Y% —6.53 3.97 —5.73 —7.30 —3.69 —2.50
—4.49 4.36 —20.86 —-9.79 —17.12 —5.85
CT —0.19 0.10 —0.16 —0.20 —0.10 —0.07
—0.13 0.11 —0.58 —0.27 —0.46 —0.16
PT —0.62 0.47 —0.54 —0.90 —0.33 —0.30
—0.43 0.52 —-1.97 —1.21 —1.53 —0.70
PV to AT —2.14 1.30 —1.88 —2.44 —-1.17 —0.82
—1.48 1.42 —6.84 —3.27 —5.43 —1.92
Pooled —0.52 0.35 —0.45 —0.67 —0.28 —0.22
PV to AT —0.36 0.39 —1.64 —0.90 —1.30 —0.51
PT to AT —0.44 0.17 —0.39 —0.33 —0.24 —0.11
—0.30 0.19 —1.42 —0.44 —1.11 —0.26
Induced —1.37 0.86 —1.20 —1.64 —0.74 —0.55
Demand —0.94 0.95 —4.37 —2.20 —3.43 —1.29
Homogeneity in —7.27 4.79 —6.37 —8.72 —4.13 —3.02
trip timing —5.00 5.26 —23.19 —11.69 —19.16 —7.07

For each input parameter, the upper line denotes the absolute change required to achieve net zero and the lower line, the relative change

(%). Original estimate figures reflect 30% homogeneity in trip timing behavior.

hence under or overrepresent the true energy impact
of ATs. We have addressed this critique by estim-
ating the energy profile, ride-pooling requirements
and smart deployment thresholds required of ATs to
achieve a favorable energy outcome.

However, the precision of these figures are them-
selves determined by market specific attributes. For
example, the energy profile of existing transportation
alternatives (specifically CTs, PVs and PT), the fre-
quency of their use following AT introduction, the
magnitude of induced demand and homogeneity in
trip timing behavior, all influence the thresholds for
the aforementioned pathways. But to what extent?
Our final analysis addresses this question (table 2).

Our model estimates that the stringency of pro-
posed net zero pathways is influenced principally
by homogeneity in trip timing and to a lesser
extent, the energy profile of PVs currently servicing
the market. The former reflects—presuming fluctu-
ations in rider demand—an increase in the num-
ber of ATs required to meet this demand, which by
consequence, necessitates more stringent technolo-
gical, behavioral and logistical thresholds to ensure
a favorable energy outcome. PVs’ role in influencing
threshold requirements reflects this mobility mode’s
dominance in meeting existing mobility needs. Con-
sequently, changing the energy profile of this mode

significantly influences the aforementioned require-
ments.

3.5. Public policy implications

Lessening light-duty vehicle emissions is timely given
their contribution to climate change and societal
morbidity [3, 4, 12]. However, practical and polit-
ically viable solutions entail recognition of the eco-
nomic benefits linked to existing mobility on demand
options [44]. Auto ownership in particular offers not
only access to jobs, but also to educational oppor-
tunities, health care, food and recreation [45]. Con-
sequently, addressing externalities linked to light-
duty-vehicle use cannot—for reasons of economic
mobility—impede upon their key offering: inexpens-
ive, convenient point-to-point travel.

ATs have been seen as an optimal solution [30,
31]. The confluence of vehicle electrification, vehicle
automation and vehicle sharing are viewed as a means
of offering both cost-effective mobility on demand
and reduced energy consumption and emissions
[12, 24, 25]. Our results suggest otherwise. Firstly,
we demonstrate that—contrary to previous work—
widespread proliferation of ATs may be impeded by
financial considerations (table 1). Secondly, we estab-
lish that even limited uptake of the technology may



10P Publishing

Environ. Res. Lett. 16 (2021) 094036

produce a net increase in energy consumption and
emissions.

However, we document three pathways—
conformance to an AT specific energy profile, ride-
pooling and smart deployment—that would facilitate
achieving a favorable energy outcome. We identify—
for the first time to our knowledge—the numerical
thresholds each of these pathways must meet; spe-
cifically showing what an AT’s energy profile must be,
how much ride-pooling is required and how many
fewer miles ATs must traverse in order to lower energy
consumption and emissions. We further demonstrate
that these thresholds are principally influenced by
homogeneity in trip timing and to a lesser extent,
the energy profile of PVs currently servicing the
market.

Changing PV energy profiles—with the aim of
lowering AT specific technological, behavioral and
logistical thresholds—is admittedly challenged by the
relatively slow rate of PV fleet turnover [46]. Sim-
ilar challenges do not, however, necessarily persist
for influencing trip timing homogeneity. Remote
work, staggered work schedules and leisure activity
engagement during non-peak times could reduce AT
threshold requirements via more heterogenous trip
timing distribution. However, we acknowledge that a
significant and sustained shift towards working from
home in particular, could have impacts elsewhere in
the energy system, such as those related to preferred
modes of transport and demand for office space [47].

4, Limitations and conclusion

Our analysis has limitations. It uses data from one
city and would benefit from analysis of other mar-
kets. Doing so may vyield different financial and/or
environmental propositions for ATs owing to market
specific attributes (e.g. licensing, existing fleet power-
train composition/improvements and grid energy
mix variations) [27, 48, 49]. For example, AT deploy-
ment in markets characterized by higher public
transit use may increase the stringency of environ-
mental design attributes and capacity utilization rates
required to achieve net zero consumption/emissions,
whereas deployment in ‘dirtier’ markets would ease
this requirement. We have labored to address this cri-
tique via elasticity testing.

Our work also does not consider energy demands
associated with vehicle-to-vehicle communication,
vehicle-to-infrastructure interactions or synergies
with data centers. These attributes may alter the
energy impact of AT deployment and warrant fur-
ther scrutiny. This is also true for congestion-related
considerations as marginal changes in road use may
increase or decrease overall consumption and emis-
sions levels [49]. Further work should also exam-
ine the energy impact of shifts from active mobility
options to ATs [29, 50].
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Behavioral aspects of AT use also warrant scru-
tiny. Our model relies on AT per mile fare estim-
ates rather than aggregated trip cost, the latter nor-
mally associated with PV ownership. Consumer sens-
itivity to this difference may alter demand via reduc-
tions in trip frequency and/or vehicle miles traveled
[6]. Tradeoffs between AT-related productivity gains,
PV-related option value—the value derived from car
ownership—and its subsequent impact also warrant
scrutiny as do consumer attitudes towards AT use.

Limitations notwithstanding, the robustness of
our effects leads us to several conclusions. First,
ATs can financially compete with CTs. Our model
estimates that CT-to-AT substitution represents a
viable pathway towards addressing technical ineffi-
ciencies and public health concerns surrounding gas-
oline use. Second, we document that the inability of
ATs to achieve cost parity with PVs may not pre-
clude the realization of negative energy externalit-
ies. Third, we show that the magnitude of these out-
comes depends on key interactions and dependencies
between supply-demand matching inefficiencies and
homogeneity in trip timing behavior. Finally, we doc-
ument specific pathways and the requisite thresholds
required to reduce energy consumption and emis-
sions.

Leveraging these pathways is—we believe—key to
fostering greater environmental stewardship absent
impediments in economic mobility.
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